Conocimiento del enfriador de agua.

This category will let you know about what can we do and how to make it via using our water chiller to change your life! Let’s share the latest technological information.

Enfriadores de agua para enfriamiento por aspersión térmica: un componente esencial en tecnologías de recubrimiento avanzadas

En el ámbito de la fabricación industrial, particularmente en sectores que requieren la aplicación de recubrimientos protectores, la implementación de tecnologías de pulverización térmica se ha convertido en una innovación fundamental. La eficacia y eficiencia de estos procesos mejoran significativamente mediante el uso de enfriadores de agua, que desempeñan un papel integral en el enfriamiento por aspersión térmica. Este ensayo tiene como objetivo explorar la mecánica detrás de los procesos de pulverización térmica, la importancia de los enfriadores de agua en estas aplicaciones y las implicaciones de las soluciones de refrigeración avanzadas en la calidad y longevidad de los revestimientos de superficies.

Los fundamentos de la tecnología de pulverización térmica

La tecnología de pulverización térmica abarca una variedad de técnicas que implican la deposición de materiales sobre un sustrato para crear un recubrimiento. Este método se emplea normalmente para mejorar la resistencia al desgaste, las propiedades de barrera térmica y la resistencia a la corrosión de componentes en una amplia gama de industrias, incluidas la aeroespacial, la automotriz y la manufacturera. El proceso implica fundir o ablandar un material, generalmente en forma de polvos o alambres, que luego se impulsa sobre un sustrato. El enfriamiento de la superficie encerada después de la deposición afecta de manera crucial las características del recubrimiento final, influyendo en su microestructura y atributos de rendimiento.
La calidad del recubrimiento por pulverización térmica depende de varios factores, incluida la temperatura del sustrato, la velocidad de las partículas y, lo que es más importante, la velocidad de enfriamiento posterior a la aplicación. El enfriamiento rápido puede conducir a una microestructura refinada, minimizando defectos como la porosidad y mejorando la adhesión al sustrato. Por lo tanto, las soluciones de refrigeración eficaces son muy codiciadas en este campo.

El papel de los enfriadores de agua en el enfriamiento por aspersión térmica

Los enfriadores de agua sirven como medio para controlar la temperatura ambiente de los componentes sometidos a pulverización térmica. Al regular los parámetros de enfriamiento, estos sistemas garantizan que los recubrimientos alcancen las propiedades deseadas sin comprometer la integridad del material. Los sistemas de agua de refrigeración absorben eficazmente el exceso de calor generado durante el proceso de pulverización, permitiendo una rápida reducción de la temperatura y promoviendo transformaciones de fase favorables en los materiales depositados.
La implementación de enfriadores de agua presenta varias ventajas distintas. La más importante de ellas es la capacidad de mantener temperaturas de funcionamiento óptimas, lo cual es fundamental para lograr la microestructura deseada. Las rápidas velocidades de enfriamiento logradas con agua enfriada pueden facilitar una rápida solidificación, ayudando a crear microestructuras densas y de grano fino que a menudo se asocian con propiedades mecánicas mejoradas.
Además, no se puede subestimar el control que ofrecen los enfriadores de agua en términos de coherencia operativa. Mantener una temperatura de enfriamiento uniforme ayuda a mitigar los riesgos de distorsión térmica o agrietamiento, que podrían surgir debido a gradientes de temperatura desiguales. Esto es particularmente importante en industrias que exigen alta precisión y confiabilidad en sus componentes. Además, la integración de enfriadores de agua en sistemas de pulverización térmica puede permitir un funcionamiento continuo, reducir el tiempo de inactividad y mejorar la productividad.

Desarrollos innovadores en tecnología de refrigeración

A medida que evolucionan las necesidades industriales, también lo hacen las tecnologías asociadas con el enfriamiento en aplicaciones de pulverización térmica. Los sistemas de refrigeración modernos suelen estar equipados con sistemas de control avanzados, que permiten el seguimiento y el ajuste de las temperaturas en tiempo real en función de la retroalimentación del proceso de pulverización térmica. Estos avances tecnológicos permiten a los operadores responder rápidamente a las desviaciones de las condiciones óptimas, garantizando recubrimientos de alta calidad en todo momento.
Además, la eficiencia energética se ha convertido en una consideración crucial en los sistemas de refrigeración contemporáneos. Con los crecientes costos de la energía y un creciente enfoque en la sustentabilidad, se están generalizando diseños innovadores que utilizan refrigerantes amigables con el medio ambiente y modos de operación energéticamente eficientes. Estos avances no sólo benefician a los fabricantes mediante el ahorro de costos, sino que también contribuyen positivamente a la gestión ambiental.

Perspectivas futuras y conclusión

De cara al futuro, el futuro de los enfriadores de agua en refrigeración por aspersión térmica parece estar preparado para avances significativos. Las tecnologías emergentes, como la integración de IoT, donde los enfriadores pueden comunicarse con equipos de pulverización térmica en tiempo real, podrían allanar el camino para aplicaciones novedosas que mejoren aún más la calidad del recubrimiento y la eficiencia operativa. De manera similar, el desarrollo de sistemas de enfriamiento híbridos que combinan el enfriamiento por agua tradicional con otros métodos, como el enfriamiento por aire o materiales de cambio de fase, presenta posibilidades interesantes para lograr una gestión térmica óptima en aplicaciones de pulverización térmica.

Conclusion

water chillers are an essential component in the realm of thermal spray cooling, significantly influencing the quality and durability of coatings applied in manufacturing. As industries evolve and embrace the need for more efficient and reliable processes, the integration of advanced chilling technologies will indeed play a critical role in achieving higher performance standards. The ongoing research and innovation surrounding cooling solutions promise a bright future for thermal spray technology, ensuring its prominence as an indispensable tool in modern manufacturing practices.

Enfriadores de agua para enfriamiento por aspersión térmica: un componente esencial en tecnologías de recubrimiento avanzadas Leer más »

Enfriadores de agua para enfriamiento por aspersión térmica

Introduction

Thermal spray technologies have established a vital role in advanced manufacturing and surface engineering by applying molten or semi-molten materials to substrates to improve surface properties. These techniques are essential in various industries, including aerospace and automotive. The effectiveness of thermal spraying relies on several parameters, with temperature regulation being the most critical. Water chillers are crucial for the thermal spray cooling process, enhancing operational efficiency. This essay examines the significance of water chillers in thermal spray cooling, including their principles, types, benefits, and implications for operational efficiency.

Understanding Thermal Spray Cooling

Thermal spraying involves the deposition of materials onto a substrate to form coatings that can enhance wear resistance, corrosion resistance, and thermal insulation, among other properties. The thermal spraying process typically generates significant heat, which can adversely affect the performance of both the workpiece and the equipment used. Therefore, effective cooling systems are essential to mitigate heat accumulation, prevent thermal distortion, and maintain the integrity of the substrates being processed. Water chillers facilitate this cooling by circulating chilled water through coiled tubes or jackets surrounding the spray apparatus, absorbing excess heat that is generated during the thermal spray process.

Operational Principles of Water Chillers

Water chillers operate on the basic principles of heat exchange and thermodynamics. The primary function of a water chiller is to remove heat from a fluid using a refrigeration cycle. The two prevailing types of water chillers utilized in industrial settings are air-cooled chillers and water-cooled chillers.

  • Air-Cooled Chillers:

These units employ ambient air to cool refrigerant coils. As the refrigerant vaporizes after absorbing heat from the circulating water, it is compressed by a compressor, moving through a condenser where it releases heat to the atmosphere. The chilled water is then circulated into the thermal spray equipment, ensuring the components are maintained at optimal temperatures.

  • Water-Cooled Chillers:

These systems use a cooling tower to dissipate heat. The refrigerant process remains similar, but instead of relying on air, water is circulated through a cooling tower where it absorbs heat from the condenser. Water-cooled chillers tend to be more efficient in applications that require high cooling loads and can handle larger volumes of chilled water, making them particularly suitable for extensive thermal spraying operations.

Benefits of Utilizing Water Chillers in Thermal Spray Cooling

The incorporation of water chillers in thermal spray processes leads to numerous benefits, reinforcing their necessity in modern manufacturing practices.

  1. Enhanced Coating Quality: By regulating the temperature of the substrate and the spray materials, water chillers promote the formation of high-quality coatings. When the substrate is too hot, it can cause issues such as poor adhesion and increased porosity in the coating. Chilled water ensures that the substrate temperature is kept within optimal limits, improving the overall quality and performance of the coating.
  2. Increased Equipment Longevity: The effective cooling provided by water chillers can considerably extend the life of thermal spray equipment. Elevated temperatures can accelerate wear and tear on components, leading to increased maintenance costs and downtime. By managing the operational temperature, water chillers contribute to better equipment reliability and longevity.
  3. Operational Efficiency: The use of water chillers enhances productivity by allowing for continuous spraying without the need for extensive pauses for cooling. This is particularly vital in high-demand operations where time efficiency directly contributes to overall output.
  4. Enhanced Safety: Excessive heat can pose safety risks to operators and equipment. Water chillers help minimize these risks by ensuring a safer working environment. By keeping operational temperatures in check, the incidence of equipment malfunctions related to overheating is significantly reduced.
  5. Environmental Considerations: With increased pressure on industries to adopt sustainable practices, utilizing water chillers can foster reduced energy consumption and lower emissions. Advanced chiller technologies can achieve high efficiencies, contributing to lower carbon footprints and compliance with environmentally friendly regulations.

Challenges and Considerations

While the advantages of water chillers in thermal spray cooling are substantial, there are also challenges to consider. The initial investment and maintenance costs of water chillers can be significant, especially for small or medium-sized enterprises. Additionally, the operation of chillers can demand a consistent energy supply, which can be a point of contention in regions where energy access is limited or unstable.

Moreover, the complexity of installation and integration into existing systems requires significant planning and expertise. Proper maintenance practices must be established to ensure the longevity of the chillers, including regular inspections, cleaning, and fluid management. Failure to adequately maintain these systems can negate many of the benefits they provide.

Conclusion

In conclusion, water chillers serve as an indispensable component in the thermal spray cooling process, enhancing the quality of coatings, extending equipment longevity, and improving operational efficiency. Though challenges such as cost and maintenance must be carefully navigated, the benefits rendered by water chillers in maintaining thermal control underscore their critical role in advanced manufacturing practices. As industries continue to evolve, the need for efficient temperature regulation will remain indispensable, ensuring that water chillers will play a prominent role in the future landscape of thermal spray technology.

Enfriadores de agua para enfriamiento por aspersión térmica Leer más »

The Guidance For Choosing the Right Aquarium Chiller 2024

Introduction:what is aquarium chiller?

Aquariums are not just a beautiful addition to our living spaces; they are miniature ecosystems that require careful maintenance to ensure the health and well-being of the aquatic life within. One of the crucial elements in maintaining a stable and suitable aquatic environment is the proper temperature control. This is where aquarium chillers come into play. An aquarium chiller is a device designed to lower the water temperature in the tank when it rises above the desired level, mimicking the natural conditions that many aquatic species need to thrive. Whether you have a saltwater reef tank with delicate corals and fish or a freshwater aquarium with temperature-sensitive species, choosing the right chiller is essential to prevent stress, disease, and even death among your aquatic inhabitants.

Factors to Consider When Choosing

  • Tank Size and Capacity

The size of your aquarium is a primary factor in determining the appropriate chiller capacity. A larger tank will require a more powerful chiller to effectively cool the larger volume of water. As a general rule, you should calculate the volume of your tank in gallons or liters. For example, a small 20gallon tank will have different cooling requirements compared to a 100gallon tank. A chiller that is too small for the tank will struggle to maintain the desired temperature, leading to fluctuations that can be harmful to the fish and plants. On the other hand, a chiller that is too large will not only be a waste of money but may also cause excessive cooling, which can also have negative impacts. It’s important to find a chiller that is rated for the appropriate tank size to ensure efficient and accurate temperature control.

  • Water Temperature Requirements

Different aquatic species have specific temperature preferences. Some fish and corals thrive in cooler waters, while others prefer a slightly warmer environment. For instance, tropical fish usually do well in temperatures between 75°F and 82°F, while certain marine invertebrates like some species of corals may require a more precise temperature range around 78°F. It’s crucial to research the temperature needs of the specific organisms in your aquarium. If you have a diverse community of aquatic life, you may need to find a compromise temperature that suits most of them. The chiller you choose should be able to maintain the desired temperature range accurately. Some advanced chillers even come with programmable temperature settings, allowing you to customize the temperature according to the needs of your aquarium inhabitants.

  • Energy Efficiency

Energy efficiency is an important consideration when choosing an aquarium chiller. A more energy-efficient chiller will not only save you money on your electricity bills in the long run but is also more environmentally friendly. Look for chillers that have high energy efficiency ratings. These often use advanced technologies and components to minimize power consumption while still providing effective cooling. Some features to look for include efficient compressors, good insulation, and intelligent temperature control systems that adjust the cooling output based on the actual temperature needs. Investing in an energy-efficient chiller may initially cost a bit more, but the savings over time can be significant, especially for larger aquariums that require continuous cooling.

  • Noise Level

The noise level of the chiller can have a significant impact on both the aquatic life and the surrounding environment. A noisy chiller can cause stress to the fish, which may affect their behavior and health. In a home setting, a loud chiller can also be a nuisance to the occupants. When choosing a chiller, look for models that are designed to operate quietly. Some manufacturers use sound-dampening materials and advanced motor technologies to reduce noise. It’s a good idea to read reviews and ask for recommendations from other aquarium owners about the noise levels of different chillers. A quiet chiller will provide a more peaceful and relaxing environment for your aquarium and your home.

  • Brand and Reliability

Choosing a reputable brand with reliable products is essential when it comes to aquarium chillers. A well-known brand is more likely to have a track record of producing high-quality, durable, and reliable equipment. Look for brands that have been in the market for a while and have positive customer reviews. Reliable chillers are less likely to break down or malfunction, which can be disastrous for your aquarium. They also often come with better warranties and customer support. Brands that invest in research and development are more likely to offer advanced features and better performance. Do your homework and research different brands to ensure you are investing in a chiller that will provide long-term reliable service for your aquarium.

Guidelines for Selecting an Aquarium Chiller

  • Research and Reviews

Before making a purchase, it is crucial to do thorough research. Look online for product reviews, comparisons, and expert opinions. Aquarium forums and websites dedicated to aquatic hobbies are great sources of information. Read about the experiences of other aquarium owners who have used different chillers. This can give you insights into the performance, reliability, and any potential issues of various models. Pay attention to details such as how well the chiller maintained the temperature, its energy consumption, noise level, and ease of installation and maintenance. By gathering as much information as possible, you can make a more informed decision and increase the chances of choosing a chiller that meets your specific needs.

  • Consult Experts

If you are new to aquarium keeping or unsure about which chiller is right for your setup, it can be beneficial to consult with aquarium experts or experienced hobbyists. They can provide valuable advice based on their knowledge and experience. Aquarium store employees who are knowledgeable about the products they sell can also offer guidance. They may be able to recommend specific models based on your tank size, the species in your aquarium, and your budget. Additionally, joining local aquarium clubs or online communities can give you access to a network of experienced individuals who can share their insights and experiences. Don’t be afraid to ask questions and seek advice from those who have more experience in maintaining a healthy aquatic environment.

  • Consider Budget

While it’s important to choose a high-quality chiller, you also need to consider your budget. Aquarium chillers come in a wide range of prices, depending on their features, capacity, and brand. Set a budget that you are comfortable with, but also be aware that cheaper models may not always offer the best performance and reliability. It’s a good idea to balance cost with quality. Look for a chiller that offers good value for money within your budget. Consider the long-term costs as well, including energy consumption and potential maintenance expenses. Sometimes, investing a bit more upfront in a better-quality chiller can save you money in the long run by providing more efficient cooling and fewer breakdowns.

  • Installation and Maintenance

Think about the ease or complexity of installing and maintaining the chiller. Some chillers are designed for easy installation and come with clear instructions and all the necessary fittings. Others may require more technical knowledge and installation skills. Consider your own capabilities and whether you will need to hire a professional for installation. In terms of maintenance, look for chillers that are easy to clean and have accessible components for servicing. Regular maintenance is essential to keep the chiller running efficiently and prolong its lifespan. Check if the manufacturer provides maintenance guidelines and whether replacement parts are readily available. A chiller that is easy to install and maintain will save you time and effort in the long run and ensure that it continues to perform well.

Specific Steps for Choosing the Right Aquarium Chiller

  1. Determine Your Aquarium’s Requirements

Measure the tank size: Accurately measure the length, width, and height of your aquarium to calculate its volume in gallons or liters. This will be the starting point for finding a chiller with the appropriate capacity.

Research the speciestemperature needs: Identify the types of fish, plants, and other organisms in your aquarium and research their ideal temperature ranges. Find a common temperature range that can accommodate most of the inhabitants if you have a diverse community.

  1. Set a Budget

Decide how much you are willing to spend on the chiller. Consider not only the initial purchase price but also the long-term costs such as energy consumption and potential maintenance. Remember that a higher-quality chiller may cost more upfront but could save you money in the long run.

  1. Research and Shortlist

Online research: Look for aquarium chiller reviews on reliable websites, forums, and social media groups dedicated to aquariums. Read about the performance, reliability, and user experiences with different models.

Ask for recommendations: Talk to aquarium store employees, experts, and other hobbyists. They can provide insights based on their own experiences and knowledge.

Create a shortlist: Based on your research and recommendations, shortlist a few chiller models that seem to meet your requirements in terms of capacity, temperature control, energy efficiency, and noise level.

  1. Check Energy Efficiency Ratings

Look for energy star ratings or other indicators of energy efficiency. Compare the power consumption of the shortlisted chillers to find the most energy-efficient option that fits your budget.

  1. Evaluate Noise Levels

Read reviews and ask about the noise levels of the shortlisted chillers. If possible, try to find videos or demonstrations that show how quiet or noisy a particular model is. Opt for a chiller that operates quietly to avoid stressing your aquatic life and disturbing your living environment.

  1. Consider Brand and Reliability

Research the brands of the shortlisted chillers. Look for brands with a good reputation for producing reliable and durable aquarium equipment. Check customer reviews for feedback on the brand’s after-sales service and warranty policies.

  1. Examine Installation and Maintenance Requirements

Read the product manuals or online descriptions to understand the installation process. Consider whether you have the necessary skills and tools for installation or if you may need to hire a professional.

Look for chillers that are easy to maintain, with accessible filters, coils, and other components that may need cleaning or servicing. Check if the manufacturer provides clear maintenance guidelines and if replacement parts are readily available.

  1. Make the Final Decision

Compare all the factors for each shortlisted chiller. Consider which one offers the best balance of performance, reliability, energy efficiency, noise level, and ease of installation and maintenance within your budget. Make the final decision based on your comprehensive evaluation and purchase the chosen aquarium chiller.

Installation Considerations for Aquarium Chiller

  • Ubicación

  1. Space Requirements: Ensure that you have enough space around the aquarium to install the chiller. It should be placed in a location where it has proper ventilation and is not cramped. A chiller needs to dissipate heat, so it should not be placed in an enclosed area with limited air flow.
  2. Proximity to the Tank: The chiller should be located as close as possible to the aquarium to minimize the length of the tubing required for water circulation. Longer tubing can lead to increased pressure drops and potentially affect the chiller’s efficiency. However, make sure there is enough clearance around the chiller for maintenance and access.
  3. Avoid Direct Sunlight and Heat Sources: Do not install the chiller in a place where it will be exposed to direct sunlight or near heat sources such as radiators, heaters, or appliances that generate a lot of heat. This can cause the chiller to work harder than necessary to cool the water and may even lead to overheating of the chiller itself.
  • Plumbing and Tubing

  1. Correct Tubing Size: Use the tubing size recommended by the chiller manufacturer. Incorrect tubing diameter can affect the water flow rate and pressure, which in turn can impact the chiller’s performance. Make sure the tubing is of good quality and free from any defects or kinks.
  2. Secure Connections: All tubing connections should be made securely to prevent leaks. Use appropriate fittings and clamps to ensure a tight seal. Leaks can not only cause water wastage but also create a mess and potentially damage your flooring or surrounding furniture. Check for leaks after installation by running the chiller for a short while and observing the connections.
  3. Water Flow Direction: Follow the correct water flow direction as indicated in the chiller’s installation manual. Incorrect flow direction can lead to inefficient cooling or even damage the chiller’s internal components. Some chillers may have specific requirements for the inlet and outlet of water, so make sure to connect them correctly.
  • Electrical

  1. Voltage and Amperage Requirements: Check the electrical requirements of the chiller and make sure that the power supply in your area can meet those requirements. Using the wrong voltage or insufficient amperage can cause the chiller to malfunction or not operate properly. It may also damage the electrical components of the chiller and pose a safety hazard.
  2. Grounding: Ensure that the chiller is properly grounded to prevent electrical shocks. Most electrical appliances come with a grounding wire or a grounding plug. Make sure to connect it to a properly grounded electrical outlet. If in doubt, consult an electrician to check the grounding of your electrical system.
  3. Power Cord Length and Placement: The power cord should be long enough to reach the electrical outlet without being stretched or strained. Avoid running the power cord across high-traffic areas or in a way that it can be easily damaged. If possible, use a cord cover or conduit to protect the power cord and make it look more organized.
  • Initial Startup and Testing

  1. Read the Manual: Before starting the chiller for the first time, carefully read the manufacturer’s instructions regarding the initial startup procedure. This may include steps such as filling the chiller with water (if required), priming the pump, and setting the initial temperature settings.
  2. Monitor Temperature: After starting the chiller, closely monitor the water temperature in the aquarium. Check if the chiller is able to reach and maintain the desired temperature within a reasonable time. If the temperature does not seem to be changing as expected or if there are any unusual fluctuations, turn off the chiller and check for any installation errors or problems.
  3. Check for Noise and Vibrations: Listen for any abnormal noise or vibrations coming from the chiller during operation. Excessive noise or vibrations may indicate a problem with the installation, such as improper leveling or a loose component. If you notice any issues, turn off the chiller and investigate further to ensure proper operation and longevity of the device.

Conclusion

Choosing the right aquarium chiller is a crucial decision that can have a significant impact on the health and well-being of your aquatic pets. By considering factors such as tank size and capacity, water temperature requirements, energy efficiency, noise level, brand and reliability, and following the specific steps for selection and installation, you can make an informed choice. A well-chosen and properly installed chiller will help maintain a stable and suitable aquatic environment, allowing your fish, plants, and other organisms to thrive. Remember that investing time and effort in choosing and installing the right chiller is an investment in the long-term success of your aquarium and the enjoyment you get from observing and caring for your aquatic friends. So, take your time, do your homework, and make the best choices for your unique aquarium setup.

Para obtener más información sobre cómo funcionan las enfriadoras y si está interesado en nuestra enfriadora, solicite una cotización.

por favor envíe su correo electrónico a info@topwaterchiller.com, or call +(86) 139 2883 9015 .

The Guidance For Choosing the Right Aquarium Chiller 2024 Leer más »

Los 4 componentes principales de los enfriadores de agua 2021

En el trabajo de producción de diversas industrias, los enfriadores comúnmente utilizados son los enfriadores enfriados por aire o los enfriadores enfriados por agua. Estos dos tipos de enfriadoras son las más habituales en el mercado.

Los enfriadores de grado industrial enfriados por aire y por agua son fundamentales para los procesos industriales, como los de plástico, productos farmacéuticos, impresión comercial y fabricación de transporte. Nuestros clientes también confían en ellos para procesos de elaboración de cerveza, operaciones de granjas lecheras y procesamiento de equipos médicos.

Tanto los enfriadores enfriados por aire como los enfriados por agua funcionan eliminando el calor de sus procesos para que sus equipos se mantengan fríos y puedan seguir funcionando con potencia. En esta publicación, brindamos una mirada privilegiada a los componentes principales de un enfriador de procesos y la importancia de cada uno.

Si alguna vez se ha preguntado qué hay dentro de un enfriador, estos son los cuatro componentes principales de los enfriadores de proceso enfriados por aire y por agua que debe conocer Los 4 componentes principales de los enfriadores y principios básicos de funcionamiento de un enfriador de agua.

1.La primera parte importante es el compresor de la enfriadora.

El motor principal del compresor de frío enfriador es un compresor centrífugo y de tornillo, y el motor comercial es un compresor scroll.

En la industria de la refrigeración, los compresores comunes se pueden dividir en las siguientes categorías.

1) Compresor rotativo

Compresor de rotor Es un compresor de gas rotativo de desplazamiento positivo. El volumen de compresión está definido por el rotor de rotación trocoidal montado sobre un eje de transmisión excéntrico con una eficiencia adiabática típica del 80 al 85%.

2) Compresor de pistón

Compresor de pistón Es un compresor de desplazamiento positivo que utiliza pistones impulsados ​​por un cigüeñal para suministrar gases a alta presión.

3) Compresor de tornillo

Compresor de tornillo Es un tipo de compresor de gas, como un compresor de aire, que utiliza un mecanismo de desplazamiento positivo de tipo giratorio. Estos compresores son comunes en aplicaciones industriales y reemplazan a los compresores de pistón más tradicionales donde se necesitan mayores volúmenes de gas comprimido, p. para ciclos de refrigeración grandes, como enfriadores, o para sistemas de aire comprimido para operar herramientas impulsadas por aire, como martillos neumáticos y llaves de impacto.

4) Compresor centrífugo de suspensión magnética

Compresor centrífugo de suspensión magnética se descarga del compresor del aire acondicionado a través de freón de alta temperatura y alta presión, ingresa al condensador, libera calor al agua de enfriamiento del tubo de cobre, se condensa en líquido de freón de temperatura media y alta presión, y luego se despresuriza a líquido de baja temperatura y baja presión a través del válvula de cierre, ingresa al evaporador, absorbe el calor del agua congelada que fluye a través del tubo de cobre en la carcasa del evaporador, se gasifica en gas a baja temperatura y baja presión y luego se inhala en el compresor, que se usa en el compresor. A través de este ciclo , se logra el propósito de enfriamiento.

2.La segunda parte importante es el evaporador.

Evaporador de enfriador industrial.

Normalmente, hay 3 tipos de evaporadores que usaríamos: Evaporador seco / Evaporador de líquido completo / Evaporador de película descendente

1)evaporador seco

El principio de funcionamiento es que el refrigerante fluye en el tubo y el agua fluye fuera del grupo de tubos. Generalmente, el problema de la acumulación de aceite no existe cuando el aceite lubricante de la carcasa ingresa al compresor con el refrigerante.

El evaporador seco se compone principalmente de un tubo de transferencia de calor, un extractor, un tubo de descarga de agua, un tubo de entrada de refrigerante, un tubo de salida de refrigerante, un tubo de entrada de agua refrigerante, un tubo de salida de agua refrigerante, tapas y carcasa de los extremos izquierdo y derecho.

la característica del evaporador seco:

1.El coeficiente de transferencia de calor es alto y la diferencia de temperatura es pequeña;

2. La cantidad de refrigerante llenado es menor, generalmente solo alrededor de 1/3 de la del tipo líquido completo;

3. Cuando la temperatura es cercana a 0 ℃, el agua no se congelará, el coeficiente de transferencia de calor es 4.bajo y la diferencia de temperatura al final es grande;

5. La escala es fácil de depositar en la superficie del tubo de cobre del evaporador y no es fácil de limpiar;

2) Evaporador de líquido lleno

El refrigerante fluye fuera de la tubería y el agua fluye dentro de la tubería. Se compone de carcasa, tubo de evaporación (tubo de alta eficiencia), placa de tubo, placa de soporte, etc.

la característica del evaporador de líquido completo:

1.El coeficiente de transferencia de calor es alto y la diferencia de temperatura es pequeña;

2.El agua pasa por la tubería y es fácil de limpiar;

3.El líquido refrigerante básicamente llena el haz de tubos y la cantidad de carga es grande;

4.El aceite de retorno del evaporador de líquido lleno es difícil e inestable;

5.Cuando la temperatura de evaporación del sistema de refrigeración sea inferior a 0 ℃;

6.El agua en el tubo es fácil de congelar y destruir el tubo de evaporación;

7.La columna de líquido estático del líquido en el evaporador de líquido completo aumenta la temperatura de evaporación saturada en el fondo.

3)Evaporador de película descendente

El refrigerante se separa uniformemente del distribuidor, forma una película líquida en la superficie del tubo de intercambio de calor, absorbe el calor en el tubo y se evapora, y el agua fluye en el tubo, que se compone de distribuidor, carcasa, tubo de evaporación (alta tubo de eficiencia), placa de tubo, placa de soporte, etc.

la característica del evaporador de película descendente:

1.Alto coeficiente de transferencia de calor y pequeña diferencia de temperatura final (mejor que el líquido completo, mejor que el tipo seco);

2.El aceite lubricante se acumula en el fondo del recipiente y es fácil de regresar debido a su alta concentración;

3. Evite la columna de líquido en el evaporador de líquido lleno para aumentar la temperatura de evaporación saturada en el fondo;

4. Se evita el fenómeno principal de la película que cae en la tubería, la transferencia de calor es más uniforme y la eficiencia es mayor;

5.El agua pasa por la tubería y es fácil de limpiar;

6. Cuando la temperatura de evaporación del sistema de refrigeración es inferior a 0 ℃, el agua en el tubo se congela fácilmente y destruye el tubo de evaporación.

3.La tercera parte principal es el condensador del enfriador.

Es parte del sistema de refrigeración, perteneciente a una especie de intercambiador de calor, que puede convertir gas o vapor en líquido y transferir el calor de la tubería al aire cerca de la tubería de una manera muy rápida. El condensador es un dispositivo de liberación de calor que transfiere el calor absorbido en el evaporador junto con el calor convertido por el trabajo del compresor al medio refrigerante. El proceso de trabajo del condensador es un proceso exotérmico, por lo que la temperatura del condensador es mayor.

Se compone de separador incorporado, carcasa, tubo de evaporación (tubo de alta eficiencia), placa de tubos, placa de soporte, subenfriador, etc.

Según los diferentes medios de refrigeración, los condensadores se pueden dividir en tres tipos: tipo de refrigeración por agua, tipo de refrigeración por aire y tipo de evaporación.

1)Condensador enfriado por agua

El condensador enfriado por agua toma agua como medio refrigerante y elimina el calor de condensación mediante el aumento de temperatura del agua. El agua de refrigeración generalmente se recicla, pero la torre de refrigeración o la piscina fría se deben instalar en el sistema. Según su estructura, el condensador enfriado por agua se puede dividir en condensador de carcasa y tubos y condensador de tubos y tubos.

a.Condensador vertical de carcasa y tubos

Las características principales son las siguientes:

1) Debido al gran flujo de enfriamiento y al alto caudal, el coeficiente de transferencia de calor es alto.

2) La instalación vertical cubre un área pequeña y se puede instalar al aire libre.

3) El agua de refrigeración fluye directamente y el caudal es grande, por lo que los requisitos de calidad del agua no son altos. Generalmente, el agua común se puede utilizar como agua de refrigeración.

4) Las incrustaciones en la tubería son fáciles de limpiar y no es necesario detener el sistema de refrigeración.

5) El aumento de temperatura del agua de refrigeración en el condensador vertical es generalmente de solo 2-4 ℃, y la diferencia de temperatura promedio logarítmica es generalmente de aproximadamente 5-6 ℃, por lo que el consumo de agua es grande. Y debido a que el equipo se coloca en el aire, la tubería es fácil de corroer y es fácil encontrar fugas.

b.Condensador de carcasa y tubos horizontales

Tiene una estructura de carcasa similar a la del condensador vertical, la principal diferencia radica en la ubicación horizontal de la carcasa y el flujo de agua multicanal.

El condensador horizontal se usa ampliamente en sistemas de refrigeración y sistemas de refrigeración de freón, pero su estructura es ligeramente diferente. Según el condensador horizontal, el tubo de enfriamiento es un tubo liso sin costura, mientras que el tubo de enfriamiento del condensador horizontal de freón es generalmente un tubo de cobre con nervaduras bajas.

Esto se debe al bajo coeficiente exotérmico del freón. Vale la pena señalar que algunas unidades de refrigeración de freón generalmente no tienen tanques de almacenamiento de líquidos. Pero utilice sólo unas pocas filas de tubos en la parte inferior del condensador, que también se utiliza como tanque de almacenamiento de líquidos.

c.Condensador tubular

El vapor del refrigerante ingresa a la cavidad entre los tubos interior y exterior desde arriba, se condensa en la superficie exterior del tubo interior y el líquido fluye hacia abajo en la parte inferior del tubo exterior a su vez y fluye hacia el depósito de líquido desde el extremo inferior.

El agua de refrigeración entra por la parte inferior del condensador y sale por la parte superior del condensador a través de los tubos internos de cada fila, uno por uno. Este tipo de condensador tiene las ventajas de una estructura simple, fácil fabricación y buen efecto de transferencia de calor debido a la condensación de un solo tubo y la dirección opuesta del flujo del medio.

Su desventaja es que el consumo de metal es grande y cuando el número de tubos longitudinales es grande, el tubo inferior se llena con más líquido, por lo que el área de transferencia de calor no se puede utilizar por completo.

Además, la compacidad es pobre, la limpieza es difícil y se necesita una gran cantidad de codos de conexión. Por lo tanto, este tipo de condensador rara vez se ha utilizado en dispositivos de refrigeración. El condensador de carcasa todavía se usa ampliamente en pequeñas unidades de aire acondicionado de freón.

d. Condensador enfriado por aire

El condensador enfriado por aire toma aire como medio de enfriamiento y elimina el calor de condensación mediante el aumento de la temperatura del aire. Este tipo de condensador es adecuado para situaciones de falta extrema de agua o suministro de agua y se usa comúnmente en pequeñas unidades de refrigeración de freón. Según las diferentes formas de flujo de aire, se puede dividir en convección natural y convección forzada.

mi. Condensador evaporativo

La transferencia de calor del condensador evaporativo depende principalmente de la evaporación del agua de refrigeración en el aire para absorber el calor latente de la gasificación. Según la forma del flujo de aire, se puede dividir en tipo de succión y tipo de presión.

El condensador evaporativo se compone de un grupo de tuberías de refrigeración, un equipo de suministro de agua, un ventilador, un deflector de agua y una caja. El grupo de tubos de refrigeración es un grupo de bobina en forma de serpiente hecho de tubos doblados sin costura, que se instala en una caja rectangular hecha de una delgada placa de acero. Los dos lados o la parte superior del cuerpo de la caja están provistos de ventiladores, y la parte inferior del cuerpo de la caja también se utiliza como piscina de circulación de agua de refrigeración.

Conexión en paralelo del condensador evaporativo y del condensador de carcasa y tubos:

4.La cuarta parte importante es el dispositivo de aceleración.

Dispositivo de estrangulamiento del enfriador

La función principal es estrangular y despresurizar, controlar y regular el flujo de refrigerante y el sobrecalentamiento.

Placa de doble orificio: respuesta de ajuste lenta; casi ninguna capacidad de ajuste; pequeño rango de ajuste de energía; bajo costo.

Válvula de expansión electrónica: estructura simple, pequeña resistencia, amplia regulación energética, respuesta rápida a la regulación de eficiencia energética, alto costo.

Consejo profesional: para requisitos de baja temperatura, pregunte acerca de las válvulas de expansión electrónicas (EEV) para brindarle un control estricto del sobrecalentamiento. Funcionan mediante el uso de un motor paso a paso que regula con precisión la posición de la válvula.

Cada uno de estos componentes de los enfriadores de procesos de grado industrial desempeña un papel vital en la refrigeración de su equipo.

Para obtener más información sobre cómo funcionan las enfriadoras y si está interesado en nuestra enfriadora, solicite una cotización.

por favor envíe su correo electrónico a LLi@aptcoating.com, o llamar +(86) 134 3313 1656 .

Los 4 componentes principales de los enfriadores de agua 2021 Leer más »

botella de plástico de moldeo por inyección de plástico

¿Por qué necesita un enfriador de agua para moldeo por inyección?

Why need to use injection molding chiller to cool the Injection molding machine?

The main applications of molding temperature control machine and water chiller are warm the mold and cold the mold.

Warm the mold-Mold Temperature Controller

Before injection, the mold should be heated to a certain temperature. Then the plastic is not easy to solidify when it is integrated into the mold cavity in the injection molding process.

The problems like insufficient physical strength, delamination, incomplete injection and blocked flow channel are all related to the weakness of warm mold, which is the significance of warm mold.

Cold the mold-Injection Molding Chiller

During injection molding, the mold needs to be cooled after the whole cavity is filled with plastic. The plastic in molten state is rapidly cooled and solidified.

This is the normal definition of plastic molding chilling. But few people know the effect of cooling rate on the physical strength and internal stress of the final product.

In principle, for different injection parts, the injection mold can be cooled via a water chiller in the fastest way. The injection molding machine produced under this way will reach the best state in terms of physical strength and internal stress.

If the cooling time is too long, the physical strength of the injection molded parts will be weakened and the internal stress will be increased. It will lead to deformation of products. The most common problems are injection molded parts with thin thickness and large size such as automobile dashboard, which will cause great trouble to automobile manufacturers.

Set the same amount of raw materials for each injection molding machine. But when the product design requirements are different, the mold temperature control requirements are also different. Some special products have great requirements on internal stress and physical strength. Different mold sections require different temperature curves, which requires multiple mold temperature controller and injection molding chiller.

¿Por qué necesita un enfriador de agua para moldeo por inyección? Leer más »

Enfriador enfriado por aire de 1HP

¿Por qué el equipo láser necesita un enfriador? ¡Porque necesita enfriarse!

Why does Laser Equipment need a chiller?
Because it needs to cool down!

What would happen:Temperature will increase when the laser equipment working

In the process of laser equipment running for a long time, the laser generator will generate high temperature continuously. If the temperature is too high, it will affect the normal operation of the laser generator, which is easy to be damaged.

How to fixed this high-temperature problem?

In order to prolong the service life of the laser, it is necessary to cool the laser exciter by water circulation to ensure its normal operation under constant temperature or set temperature.

The water cooler is mainly used to cool the laser generator of the laser equipment, and control the temperature of the laser generator, so that the laser generator can work normally for a long time. Water chiller is a kind of water cooling equipment, which can provide constant temperature, constant current and constant pressure. The principle of the water chiller is to inject a certain amount of water into the internal water tank of the machine, cool the water through the refrigeration system of the water chiller, and then the water pump inside the machine will inject the low-temperature frozen water into the equipment to be cooled. The frozen water will take away the heat inside the machine, and return the high-temperature hot water to the water tank again for cooling, so as to achieve the purpose of cooling the equipment Use.

¿Por qué el equipo láser necesita un enfriador? ¡Porque necesita enfriarse! Leer más »

Problemas de funcionamiento y contramedidas de los equipos de refrigeración en invierno

Operation problems and Countermeasures of refrigeration equipment in winter

In Winter, when the outdoor temperature is wet and low, and the condensation pressure has a great influence on the performance of the refrigeration system.

When the condensation pressure (or condensation temperature) is high, the compression ratio increases.

And the volumetric efficiency of the compressor decreases, resulting in the reduction of refrigeration capacity and the increase of power consumption. The higher the exhaust temperature and the higher the condensation pressure, the greater the adverse effect.

The phenomenon of high condensation pressure mainly occurs in Summer. At this time, the condensation pressure should be reduced as much as possible to ensure the economy and reliability of the system operation.

However, in winter, the condensation pressure of refrigeration equipment may be too low.

When the condensing pressure is too low, the pressure difference between the front and back of the expansion valve is too small, and the capacity of the expansion valve is reduced, resulting in the insufficient liquid supply capacity of the system refrigerant, the lack of liquid in the evaporator, and the refrigeration capacity of the system is greatly reduced, and the unit is protected under low pressure. Therefore, it is necessary to control the condensing pressure in a reasonable range, otherwise the refrigeration device will have frequent low-pressure alarm or low suction pressure alarm.

In order to avoid the winter operation risk of the cooling water system, we can start from :the cooling tower equipment, cooling tower operation strategy and the end pipeline setting.

To avoid the winter operation risk through the equipment side anti freezing, cooling tower start-up and shutdown and pipeline optimization design.

1.There are TWO parts of antifreeze in the place of perennial operation or partial operation:

Spray Water System and Internal Circulating Water System (softened water).

For the anti freezing problem of spray water system, an electric heater is usually added in the water pan, which is generally started when the spray water is lower than 5 ℃ and stops when the spray water is above 8 ℃.

The temperature probe transmits the signal to the control cabinet to automatically control the start and stop of the electric heater. The power selection of electric heater depends on circulating water volume and external air temperature.

2.Ethylene glycol solution or electric heating equipment can be added to prevent freezing of internal circulating water system.

The freezing point temperature of glycol solution should be selected below the local historical minimum temperature.

For the larger cooling system, we can consider digging a pool to put the spray water into it, which can save the power consumption due to electric heating operation.

Problemas de funcionamiento y contramedidas de los equipos de refrigeración en invierno Leer más »

Comparación entre válvula de expansión electrónica y válvula de expansión térmica

Comparación entre válvula de expansión electrónica y válvula de expansión térmica

Now more and more civil and commercial refrigeration equipment use electronic expansion valve to replace the original thermal expansion valve. The electronic expansion valve and the thermal expansion valve have the same basic use, but different in performance.

1. Adjustment range

At present, the regulating range of thermal expansion valve is generally narrow. The heat pump unit should not only refrigeration, but also heating, and the ambient temperature range of the suitable occasions is from – 15 ℃ a + 43 ℃, y la temperatura de evaporación del refrigerante correspondiente funcionará en el rango de – 25℃ – 5 ℃. In addition, if there are multiple compressors in the refrigeration circuit, the number of compressors in operation will change accordingly with the change of user load, resulting in dramatic change of refrigerant flow.

Therefore, a single thermal expansion valve is far from competent for the operation of large heat pump units. At present, many large-scale heat pump products are designed with single loop and single compressor, and the expansion valve system with independent refrigeration mode and heating mode is adopted, which will increase the complexity and manufacturing cost of the system. The electronic expansion valve can be adjusted accurately in the range of 15% ~ 100%.

According to the current use effect, a single electronic expansion valve can meet the regulation of heat pump unit under the above conditions. The adjustable range can be set according to the characteristics of different products, which increases the flexibility.

2. Control of superheat

(1) Superheat control point:

For the thermal expansion valve, generally only the superheat at the evaporator outlet can be controlled. In the semi closed and fully closed compressor system, the control point can be set not only at the evaporator outlet, but also at the compressor suction port, which can control the suction superheat of the compressor to ensure the efficiency of the compressor.

(2) Superheat setting value:

For thermal expansion valve, its superheat setting value is generally set by the manufacturer in the manufacturing process, usually 5 ℃, 6 ℃ or 8 ℃. The superheat degree of the electronic expansion valve can be set manually according to the different characteristics of the product. For example, the superheat of the evaporator outlet is set to 6 ℃, and the superheat of the compressor suction can be set to 15 ℃, which is very flexible.

(3) Stability of superheat control under non-standard operating conditions:

The superheat setting values of thermal expansion valve are all set under standard conditions. However, due to the characteristics of charging working fluid, when the system deviates from the standard working condition, the superheat will deviate from the set value with the change of condensation pressure, which will not only cause the decrease of system efficiency, but also cause the fluctuation of the system. The superheat degree of the electronic expansion valve is set by the controller artificially, and the actual superheat degree of the system is calculated by the parameters of the control point collected by the sensor, so there is no such problem.

(4) Intelligence of system regulation:

The superheat control of thermal expansion valve is based on the state of the current control point, which is determined by the characteristics of working fluid filled. It can not judge the change trend of the system. The control logic of the electronic expansion valve can adopt various intelligent control systems according to the design and manufacturing characteristics of different products. It can not only adjust the current state of the system, but also distinguish the characteristics of the system according to the change rate of superheat degree and other parameters. The corresponding control methods are adopted for different system change trends. Therefore, its response speed and pertinence to system changes are superior to thermal expansion valve.

3. Reaction rate

The thermal expansion valve is driven by taking advantage of the thermal characteristics of the filling working medium, so its opening and closing characteristics are as follows:

(1) The sensitivity of reaction and the speed of opening and closing are slow.

(2) Generally speaking, the opening and closing speed of thermal expansion valve is relatively consistent.

(3) In the process of unit start-up, there is static superheat. The superheat (SH) of thermal expansion valve is composed of static superheat (SS) and opening superheat (OS). Due to the existence of static superheat, there will be a tendency to delay the opening of thermal expansion valve during startup.

The driving mode of the electronic expansion valve is that the controller calculates the parameters collected by the sensor, sends the regulation command to the driving board, and the driving board outputs the electric signal to the electronic expansion valve to drive the action of the electronic expansion valve. It takes only a few seconds for the electronic expansion valve to change from fully closed to fully open. It has fast reaction and action speed, and there is no static superheat phenomenon. Moreover, the opening and closing characteristics and speed can be set manually, which is especially suitable for the use of heat pump units with severe fluctuation of working conditions.

4. Diversity of control functions

In order to prevent compressor overload caused by excessive refrigerant pressure and flow at evaporation side during the initial start-up of the unit, the thermal expansion valve is generally equipped with mop function, that is, the expansion valve can only be opened when the evaporation pressure is lower than the set value. However, compared with the electronic expansion valve, its function is still monotonous.

The structure of the electronic expansion valve can be regarded as the organic combination of throttle mechanism and solenoid valve, and it can be adjusted by the controller. Therefore, according to different product characteristics, it shows the diversity and superiority of its control function under the conditions of unit start-up, load change, defrosting, shutdown and fault protection. For example: the electronic expansion valve to regulate the refrigerant flow can not only control the evaporator, but also can be used to adjust the condenser.

When the evaporation condition allows, if the condensation pressure is too high, the expansion valve can be properly closed to reduce the refrigerant flow in the system and the condenser load, so as to reduce the condensation pressure and realize the efficient and reliable operation of the unit.

Comparación entre válvula de expansión electrónica y válvula de expansión térmica Leer más »

Secuencia de operación del enfriador de agua

Secuencia de operación del enfriador de agua

1.CHECK LIST BEFORE INPUT POWER

WHEN the power supply and water supply both meet the requirements,then can we input the power:FIRST, press the power button ON, and check :

① LIQUID LEVEL AND OPEN THE PUMP VALVE:

Whether the liquid level of the cold water tank meets the requirements and whether the front and rear valves of the cold water pump have been opened;

② OPEN THE WATER TOWER AND PUMP

Turn on the switch of cooling water tower and cooling water pump, and pay attention to the opening of inlet and outlet valves of cooling water. (Note: air cooled type does not need cooling water tower)

③CHECK THE TURNING DIRECTION

When all the above conditions are met, you can use the inching mode to test whether the direction of cooling water pump, cold water pump, cooling tower fan and condensing fan of air cooling unit is correct, and whether the water transmission and air suction and discharge are normal. If not, they must be eliminated first.

2. PRESS THE CHILLER OPEN BUTTON AND LET IT RUN

Turn on the running switch of the chiller again, and the chilled water pump starts to run. Please note that the inlet and outlet valves of the chilled water must be opened, and the compressor will run automatically after the delay switch. Please check and adjust the required temperature.

3. Startup sequence difference of water-cooled and air-cooled chiller:

① Water cooled chiller unit:

turn on the cooling tower fan and cooling water pump first, and then turn on the chiller

② Air cooled chiller unit:

can be started directly

4. Shutdown sequence:

① Water cooled unit:

turn off the chiller first, then turn off the cooling tower fan and cooling water pump

② Air cooled unit:

It can be shut down directly.

Secuencia de operación del enfriador de agua Leer más »

Instalación de enfriadores de agua industriales.

Requisitos de instalación del enfriador de agua industrial.

Installation Requirements of Industrial Water Chiller

All the Installation requirements of industrial water chiller you should notice to make sure the chilling unit can run as long as it can.

Industrial chillers can be divided into two categories according to the heat dissipation mode: 1. Water cooling units; 2. Air cooling units.

The water-cooled unit must be connected with the cooling tower and the inlet and outlet pipes of cooling water and chilled water. The cooling tower and cooling pump should be selected according to the refrigeration capacity and compression power, with the inlet pressure ≥ 1.5bar, and the diameter of the inlet and outlet pipe should be consistent with the diameter of the cooling water inlet and outlet pipe.

However, the air-cooled unit only needs to connect the chilled water inlet and outlet pipes and make-up water source. After the power supply is connected, the operation can be carried out. The ventilation should be smooth, and there should be no dust and debris around to avoid being inhaled into the unit.

1.The diameter of the water pipe

The diameter of the water pipe connection port reserved by the unit is standard size. When the remote transmission is adopted, a larger diameter water pipe must be used for connection. In any case, the diameter of the water pipe should not be smaller than the standard diameter of the connection port, otherwise, the pressure alarm will be given and the compressor and water pump will be damaged greatly.

2.Connecting The Water Pipe

When connecting the water pipe, the user should refer to the installation diagram to connect the pipeline, confirm the position of the inlet and outlet pipe, distinguish the cooling water pipe and the chilled water pipe.The wrong connection of the pipe will damage the unit.Only after ensuring the normal connection of the whole system can the system be started up and run.

3.With Connector or Flange

When the water pipe is connected to the unit, it must be connected with a connector or flange, so that it can be easily removed when necessary.

4.Connect a Hose

A section of hose is connected to the outlet and inlet of the water pipe to reduce vibration transmission.

5.Valves and Filter

If permitted, install valves on water pipes to effectively control water flow. It is suggested to install a filter at the water inlet to prevent sediment and debris.

6.Check Leakage Problem

Check the internal and external have leakage problem or not,when the water inlet/outlet valve of evaporator and condenser is fully opened.

7.Wrap With Insulation Material

The water pipe should be wrapped with enough insulation cotton to protect it from frost on the surface and keep the chilling water temperature.

8.Winter Protection Measures

In winter, when the unit stops operation, the water in the water pump and water pipe may freeze, causing damage to the unit and water pipe. In order to prevent icing, when the unit stops, the water pump can be effectively started. If there is still possibility of icing, all water in the water pipe will be discharged. If drainage is difficult, an anti icing mixture such as ethylene glycol or propanol can be used.

9.By-pass Pipe

When installing the unit, please install the bypass pipe in the chilled water pipeline device. When the chilled water outlet valve is turned down, the bypass pipe valve can be adjusted to relieve the pump pressure and prevent the evaporator from freezing.

10.Check Before Running

When the air-cooled chiller is started up and running, please pay attention to whether the water pump and exhaust fan turn normally before starting up and running.

11.High/Low Pressure

When the unit is running, please pay attention to the pressure display content: water cooled high pressure is (1.2 ~ 1.8MPa), low pressure is (0.3 ~ 0.6MPa); air cooled high pressure is (1.2 ~ 1.9mpa), low pressure is (0.3 ~ 0.6MPa). If the value is too high or too low, it means that the fault is a precursor or improper use. Please check it in time or inform the manufacturer to deal with it. Maintenance in advance is better than repair afterwards.

12.Cooling Water and Scale

To ensure that the condenser is not easy to scale and can be used for a long time, please use softened water (or tap water) as cooling water. If a cooling tower is used, the cooling water should be replaced regularly.

13.Regular Cleanning

The condenser and evaporator of the chiller usually need to be cleaned after a period of use (the cleaning cycle depends on the surrounding environment and water quality).

14.Temperature Setting

It is better to control the outlet water temperature of the unit at 7 ~ 12 ℃. When adjusting the temperature controller, please note that low temperature will cause some protection devices of the unit to fail.

15.Electric Control Elements and Protection Devices

All electric control elements and protection devices of the unit have been strictly tested by the manufacturer. Users are not allowed to change or remove them during inspection and maintenance. Forced operation without protection will cause great damage to the unit.

Requisitos de instalación del enfriador de agua industrial. Leer más »

Gracias !

El mensaje fue enviado exitosamente.

Nos comunicaremos con usted dentro de 1 día hábil. Preste atención al correo electrónico con el sufijo «@topwaterchiller.com».

Espero que tengamos una relación comercial estable en el futuro.